“先从最上层数起,数到有十二只坛子的地方,正好是十一层。用刍童法来计算,把上层的长乘二得四,与下层的长相加得十六,与上层的宽相乘,得三十二;再把下层的长乘二得二十四,与上层的长相加得二十六,与下层的宽相乘,得三百一十二;上、下两数相加,得三百四十四,乘高得三千七百八十四。另外将下层的宽十二减去上层的宽,得十,与高相乘,得一百一十,与前面的数字相加,得三千八百九十四;取它的六分之一,得六百四十九。这就是这堆酒坛的数量。运用刍童法算出的是实方的体积,运用隙积法算出的是空缺部分拼合成的体积,也就可以算出多余的体积。丈量土地的方法,方、圆、曲、直的算法都有,不过没有会圆的算法。凡是圆形的土地,既能够拆开来,也应该能让它拼合起来恢复圆形。古代的算法,只用中破圆法把圆形拆开来计算,它的误差有达三倍之多的。我另外设计了一种拆开、会合的计算方法。假设有一块圆形的土地,用它的直径的一半作为弦,再以半径减去所割下的弧形的高,用它们的差作为股;弦、股各自平方,用弦的平方减去股的平方,将它们的差开平方后作为勾,再乘二,就是所割弧形田的弦长。把所割的弧形田的高平方,乘二,再除以圆的直径,所得的商加上弧形的弦长,便是所割弧形田的弧长。再割一块田也像这样计算,用总的弧长减去已割部分的弧长,就是再割之田的弧长了。假如有块圆形的土地,直径是十步,想使割出的圆弧高二步,就用圆半径五步作为弦,五步自乘得二十五;又用半径减去弧形的高二步,它们的差三步作为股,自乘得九;用它与弦二十五相减得十六,开平方得四,这就是勾,再乘二,就是弧的弦长。把圆弧的高二步自乘,得四,再乘二得八,退上一位为四尺,用圆的直径相除。现今圆的直径为十,已经满了整十数,不可除。只用四尺加下圆弧直径,就是所割圆的弧长,共得圆弧直径八步四尺。再割一块圆田,也依照这种方法。如果圆直径是二十步,要求弧长,就应当折半,也就是所说的要用圆弧的半径来除它。这两种方法都涉及精确的算法,是古书里没有说到的,随笔记录于此。喻皓《木经》篇的原文为,营舍之法,谓之《木经》,或云喻皓所撰。凡屋有三分。去声:自梁以上为上分,地以上为中分,阶为下分。凡梁长几何,则配极几何,以为榱等。如梁长八尺,配极三尺五寸,则厅堂法也。此谓之上分。楹若干尺,则配堂基若干尺,以为榱等。若楹一丈一尺,则阶基四尺五寸之类,以至承棋、榱桷皆有定法,谓之中分。阶级有峻、平、慢三等;宫中则以御辇为法。”


状态提示:第779章
本章阅读结束,请阅读下一章
回到顶部